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INTRODUCTION

Let f; and f, denote real valued continuous functions defined on a compact
Lebesgue measurable subset E of the real line. Let n denote a fixed positive
integer and P the set of real polynomials of degree » or less. In [1] Dunham
considered, for the case F a nondegenerate compact interval, the problem of
minimizing the expression

max{|lfy —pl. 1o —PI}  (peP),

where || || denotes the supremum norm. In other notation this expression
assumes the form

” A —prl,, e —plL, ”zw (peP).

In this paper we study the corresponding problem of minimizing
WA= el 0 e — Pl ll,  (PeP)

i.e., minimizing
[1hi=pldx+ [ 1fi—pldx  (peP).
E E

More generally, we consider the problem of minimizing

S [ 1fi—pld P),
Ll fi—plax ep

where f; ,..., f;, are Lebesgue measurable real-valued functions on E.

* This paper is taken in part from a thesis by M. P. Carroll in partial fulfillment of the
requirements for the Ph.D. degree in the Department of Mathematics at Rensselaer
Polytechnic Institute.
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In Section I we consider questions of existence and characterization of a
polynomial of best approximation i.e., of a polynomial ¢ € P such that

Ll fi—arax—if ¥ [ 15— pldx
The proofs, although fairly standard, are included for completeness.
In Section II we consider the question of uniqueness of a polynomial of
best approximation. Our results indicate that when m is odd the polynomial

which best approximates (f] ,..., /) is unique and when m is even, it may or
may not be unique.

SECTION 1
For E a nonempty compact Lebesgue measurable subset of the real line,
LY E) denotes the set of all Lebesgue integrable real-valued functions defined

on E.

THEOREM 1. Let m be a positive integer and let f;e LXE) (1 < i< m).
Then there exists a polynomial q € P such that

glelﬁ—‘Ildx=Lg}f:i=zlLlﬁ—Pldx.
Proof. Let {p,> be a sequence in P such that
fm X [ = plde=inf Y [ 1i—pldx
For each k we have
0< [ ipsidx
<[ 1A —pulde+ [ 1£1dx
E E

<3 [ 1= pelax+ [ 1fi1dx

"

=inf 3 [ 1fi—pldx

PP i

S 1= plax—int 3 [ 15— pras]+ [ 1414

i=1
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Since the term in brackets tends to zero as k tends to infinity the sequence
{fe | px | dx)> is uniformly bounded. Thus the sequence {p;> contains a
subsequence which converges, in the L! norm, to an element of P (see, e.g.,

[2, p. 16]). Without loss we assume that there exists an element g € P such
that lim,,, |z | px — ¢ | dx = 0. Further, for each k

TRV AT
<£L(iﬁ~pk|+|pk—q|)dx_£2}gt;£,ﬂ~pldx

—m [ ipe—qlds+ |3 [ fimpid =it X [ 1 piax]

Since the term in brackets tends to zero as k£ approaches infinity, and since
limg., f& | px — g | dx = 0 we conclude that

L[ i—glde=infy [ 1fi—pids

This completes the proof.
For a real valued function f, defined on E, denote the set of its zeros by Z; .

THEOREM 2. Let m be a positive integer and let f; € INE) (1 < i < m).
Then a polynomial g € P is a best approximant to (f; ,..., fm), i-€.,

Elelfz—qld’x:itél}{i;f‘glﬁ—pldx,

iff for every pe P,
Zi fzfﬂ |pldx = Ei L psga(f; — @) dx|. (1)

Proof. Let g be a polynomial in P which best approximates (f; ,..., i)
and suppose that for some p, e P (1) does not hold. Without loss we may
assume that

d ; — ) dx.
iglfzf‘_qlpol *< X pro sgn(f; — ) dx

Now let ¢ be a fixed positive real number and M = maxX,.x | po(x)|, and
define
E;,={xekE |flx) —qx)| <tM} (A<i<m).
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Since sgn(f; —¢q) = sgn(f; — g —1py) on E ~ E; (1 <i < m), we have

[ 1fi—a—tp dx
E

=[, Gi—a—myseli—qdx+ [ 1fi—q—1tpldx

EnEy,

= i—glde—| oposen(fi—qydx+ | 1fi—qldx

E~Ey, E~Ey,

—f | /: —~q|dx+f 1py sg(f; — q) dx
Ey, Ey,

—f tposgn(ﬁ—q)dx+f | fi —q — tpo | dx
Ers Ery

=[Vi—qlds— | posgn(fi—pds+ [ (fi—q— 1)
E E Ey,
X [sgn(f; — g — tp)) — sgn(f; — Pldx (1 <i<m).
Since}fi—q—tpol<2tMonEf‘(1<i<m),wehave
[1fi—a—1poldx— [ If; —qlax
E E

<t[[  Imids— [ posen(s; — ) dx + 4Mx(E,, — Z,,)].
Z E
Hence,

L[ fima—mlds— % [ 1fi—qlax

< dx — . —g)d
\t[zjl fz,i_qlPOl *— X fEPOSgn(ﬁ g) dx

+4M Y x(E;, ~ Z,‘_,)].
i=1

For each i (1 <i < m) E;, is nondecreasing (in the sense of set inclusion)
with respect to #; and since xE < o0, lim,,, X(E;, ~Z; o) =00 <i<m).
Thus there exists # > 0 such that

Elfglfz-—q—?poldx——glelfi—qldx<0,

which contradicts the choice of g.
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Conversely, let ¢ be a polynomial in P for which (1) holds for every p € P.
Then for any p € P we have

> [ 1fi—aqlax
= L[ Gi-pmi-ads+ § [ 0 —pselsi~ o) ds

- = psmlfi— ) ds+ 3 [ (p— ) sealfi — g) .

i=1 E"’Zﬁ'a

From this and (1) we obtain

W RVETIES

<Y[  i-pmswti-pdct+ Y[ I1p—qldx
i=1 YE~Zs g i=1"Z5;
Since [p — q| = ifi—pioani_q(l < i < m) we obtain

Y [ 1fi—qlax<¥ [ 1/i—plax,
Y imalax<y [ 1fi—pldx

which completes the proof.

SecTioN 1T

In this section we prove uniqueness theorems for the cases m = 2 and,
m = 3, after which we state without proof two uniqueness theorems, one for m
an even integer and one for m an odd integer. The proofs of these last two
theorems parallel the proofs of the theorems for the cases m = 2 and m = 3.

We say that a point x, interior to a real interval I is a zero crossing of a
real-valued function f defined on 7 if f(x,) = 0 and f(x) - (x — x,) has the
same sign in some deleted neighborhood of x, . (f may be identically zero in
a neighborhood of x; .)

LemMmA 1. Let I be a nondegenerate compact interval of the real line. Let f,
and f, be continuous real-valued functions on I such that f; < f, on I. Let q be
a polynomial in P such that

[1n—qiax+[1fi—qide=inf[[ 1fi—pldx+ [ 1/ —pidx].
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If there exists X € I such that [f,(X) — q(X)][fo(X) —q(x)] >0 and if /; — q
has at most a finite number of zeros, then f; — q has more than n zeros on I
i=12).

Proof. Letting p = 1 and m = 2 in Theorem 2 gives

0> | [ sen(f; — @) dx + [ sen(, — ) dx |

Since |sgn(f; — ¢q) + sgn(f; — ¢)| = 2 in a neighborhood of X it follows
that both f; — gand f;, — g have a zero crossingin I. Let x; << x, << -+ < Xy,
be the zero crossings of f, —g¢q. Since sgn(f; —¢q) > 0 implies that
sgn(f; — q) + sgn(f, — q) > 0 and sgn(f; — ¢) < 0 implies that

sgn(f; — q) +sgn(f; —q) <0,

and since |sgn(f; — q) + sgn(f; — ¢)| =2 in a neighborhood of X, it
follows that

| P sen(i — gy dx + | psen(y — @) dx # 0
where

) =G~ x),  xel

But Theorem 2 requires that this last sum of integrals be zero if &k < n.
Thus k > »n which implies that the number of zeros of f; — g on I exceeds #.
A similar argument shows that f; — ¢ has more than »n zeros on I.

LemMMA 2. Let I be a nondegenerate compact interval of the real line.
Let f; and f, be real valued measurable functions defined on I. Let M(x) =
max{fy(x), o(x)}, x €I, and m(x) = min{f,(x), fo(X)}, x € L. Then for every
polynomial p € P we have

[1a—prax+[1fi—plde=[1m—plde+ [iM—plax

Proof. The proof follows immediately by noticing that for all x € I and
forallpeP,

|/1(x) — p(X)| + | fo(x) — p(X)| = | m(x) — p(x)| + | M(x) — p(x)|.

The next theorem gives a sufficient condition for the uniqueness of a best
approximant to (f;, f3).
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THEOREM 3. Let I be a nondegenerate compact interval of the real line.
Let f, and f, be continuous real-valued functions on 1. Let q be a polynomial in P
such that

[1A—aiac+ [1n—gldv=f[[1A—p1de+ [ 1/~ plax,
@

ie., q is a best approximant to (f, , f2). If there exists X € I such that
[A®) — a®I[(f(X) — q(x)] > O,
then q is unique, i.e., if § € P is a best approximant to ([, fp), then § = q.

Proof. Without loss one may assume, by Lemma 2, that f; < f;. Let g,
g € P be best approximants to (f; , ), where there exists X € I such that

[A(Z) — a®) (%) — q(X)] > 0.
An application of the triangle inequality shows that g, = ¥(¢ + §) (€ P) is

also a best approximant to (f;,f3). Since [fi(x) — g()][fo(x) — g(x)} > 0
in a neighborhood of X, it follows, using the equality condition for the triangle

inequality, that | f(x) — g(x)| + | fo(x) — g(x)] > | fi(x) — fo(x)] in a neigh-
borhood of X and hence

Llﬁ*qldx+L[fz—qldx>f][f1_f2|dx_

Thus, there exists X, € [ such that

[/1(%0) — qo(X)][fo(¥0) — go(X0)] > O.

Further, since ¢, , ¢, § are all best approximants, we have
1
[1h—atax+ [1fi—qoldx—5[[1fi—qldx+ [ 1/ —qldx]

‘%U,'ﬁ'fﬂdx+f[lf2—qldx]=o,
or

[An—al—t1h—ql—tA—aDdr
+[fi—al —tii—al—tfi—ahdx=0.
Since [f; —qo| <3 [fi—ql+3fi —Glonl(i=1,2), we have

Ifi—d! —%1fi—ql—%1fi—q]=0o0nl (i=12).
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Thus, both f; — ¢ and f; — g vanish at every zero of f; — g, (( = 1, 2), i.e.,
q = § at every zero of f; — ¢, (i = 1, 2). To complete the proof it suffices
to argue that f; — g, has more than # zeros for either i = 1 or i = 2; but this
follows immediately from Lemma 1.

The next two lemmas are used in the proof of Theorem 4, which asserts
that the best approximant to (f;, f5, fs) is unique.

LemMMA 3. Let I be a nondegenerate compact interval of the real line.
Let f1, fy, and f; be measurable real valued functions on I. Let M(x) =
max{fi(x), f(x), 5(x)}, x €I, c(x) = max[min{fy(x), fo(x)}, min{fi(x),fs(x)},

min{fy(x), f()}], x €1, and m(x) = min{f;(x), fo(x), fo(x)}, x €1 Then for
every polynomial p in P

[1fi=pldx+ [1f—plde+ [ 1fi—pldx
I 1 I
=J[m—pldx—{—flc——p]dx—i—flM——pldx.
I I I
Proof. The proof follows immediately by noticing that for all xe 7

| A4x) — p(X)| + | folx) — p(x)] + 1 fo(x) — p(x)]
= [ m(x) — p(x)| + | e(x) — p(x)| + | M(x) — p(x)I.
LemMA 4. Let I be a nondegenerate compact interval of the real line. Let

f1 515 » and fy be real valued continuous functions on I such that f; < f; < fyonlL
Let q be a polynomial in P such that

[1A—qrde+[1fi~qlde+ [ 1fs— glax
=inf[[1A—pidet [1fi—pldct [ifs—pla].

If f; — q has at most a finite number of zeroson I (i = 1, 2, 3), then f; — q has
more than n zeros on L.

Proof. letting p = 1 and m = 3 in Theorem 2 gives

02Ulsgn(fl—q)dx+flsgn(fz—q)derflsgn(fs— g) dx |.

Thus, f; — q has a zero crossing in 1. Let x; < x, << - < x3, be the zero
crossings of f; — g. Since sgn(f; — ¢) > O implies that

sgn(fy —¢q) +sgn(fe —¢q) +sgn(fa —¢) >0 and  sgn(f; —q) <O
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implies that sgn(f; — q) + sgn(f; — q) + sgn(fy — q) < 0, it follows that
| [ Bsen(h — @) dx + [ psenh — @) dx + [ psen(fy — g) dx
> [1pldx #0,
I

where p(x) = I'[:-";l (x — x;), x € I. But Theorem 2 requires that the sum of
integrals above be zero if & < n. Thus k > » which implies that the number
of zeros of f, — ¢ on I exceeds n.

Remark. The conclusion of the lemma holds without the assumption that
Ji —q and f; — g have a finite number of zeros on I The proof is more
involved and is not given here since the weaker form is sufficient for our

purposes.

THEOREM 4. Let I be a nondegenerate compact interval of the real line.
Let f; , 1, and f5 be continuous real valued functions on I. Let q be a polynomial
in P such that

[1Ai—aidet [1f—qldx+ [1fo—qldx
I
=inf[[1fi—pldet [1fi—pldc+ [ 1fi—pldx]

i.e., q is a best approximant to (fy, fs,fs). Then q is unique, i.e., if Ge P is
a best approximant to (f, , f2 , f3), then g = q.

Proof. Without loss we may assume, by Lemma 3, that f; < f, < fon L
The proof proceeds by contradiction. One assumes that ¢, g € P are distinct
best approximants. An application of the triangle inquality shows that
qo = ¥(g 4+ g) (e P) is also a best approximant to (f;,fs,fs). An argument
similar to that given in the proof of Theorem 3 shows that ¢ = g at every
zero of f; — q, (i = 1, 2,3). Since g = g, the number of zeros on I of
Ji —qo (i =1,2,3) is less than n. In particular, the number of zeros of
Ja — gy is less than » which contradicts the conclusion of Lemma 4.

Theorem 5 gives a sufficient condition for the uniqueness of the best
approximant to (f; , f5 ,.-., fam). Theorem 6 asserts that the best approximant
to (f1,Ja 5--s fom+1) 18 unique. Their proofs are similar to those of Theorems 3
and 4, respectively.

THEOREM 5. Let I be a nondegenerate compact interval of the real line. Let
Ji < - < S be continuous real valued functions on 1. Let q be a polynomial
in P such that

2m . om
LI imatde=infy [1si—pidx
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i.e., q is a best approximant 10 (f; ,..., fam). If there exists X € I such that

(X)) — g@Nfnn(®) — ¢(®)] > 0,

then q is unique, i.e., if G € P is a best approximant to (fy ,..., fam) then § = q.

Remark. 1If fi,...,fam are continuous real valued functions on I, not
necessarily ordered, and

hi(x) = max min{f, ()., Lro()} (1 <7< 2m),

where S; denotes the set of all one to one mappings of the set of integers
{1,..., i} into the set of integers {1,..., 2m} (1 << i < 2m), then we can show
that a polynomial which best approximates {f; ,..., fom, i @ polynomial which
best approximates (4, ,..., #5,) and vice versa. Thus, we can give a sufficient
condition that the polynomial which best approximates (f; ,..., fom) be unique.

THEOREM 6. Let I be a nondegenerate compact interval of the real line.
Let f, ..., fams1 be continuous real valued functions on I. Let q be a polynomial
in P such that

2m+1 2m+1

i.e., q is a best approximant 1o (fy ,..., foms1). Then q is unique.
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