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INTRODUCTION

Letfl andf2 denote real valued continuous functions defined on a compact
Lebesgue measurable subset E of the real line. Let n denote a fixed positive
integer and P the set of real polynomials of degree n or less. In [1] Dunham
considered, for the case E a nondegenerate compact interval, the problem of
minimizing the expression

max{llfl - P II, IIf2 - P II} (p E P),

where II II denotes the supremum norm. In other notation this expression
assumes the form

1IIIh - p Ik", ' IIf2 - pIlL., Ik", (p E P).

In this paper we study the corresponding problem of minimizing

(p E P);

i.e., minimizing

(p E P).

More generally, we consider the problem of minimizing

(p E P),

whereh ,...,fm are Lebesgue measurable real-valued functions on E.

* This paper is taken in part from a thesis by M. P. Carroll in partial fulfillment of the
requirements for the Ph.D. degree in the Department of Mathematics at Rensselaer
Polytechnic Institute.
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In Section I we consider questions of existence and characterization of a
polynomial of best approximation i.e., of a polynomial q E P such that

i~ t Iii - q Idx = ~~t i~ t Iii - pi dx.

The proofs, although fairly standard, are included for completeness.
In Section II we consider the question of uniqueness of a polynomial of

best approximation. Our results indicate that when m is odd the polynomial
which best approximates (II ,... ,fm) is unique and when m is even, it mayor
may not be unique.

SECTION I

For E a nonempty compact Lebesgue measurable subset of the real line,
VeE) denotes the set of all Lebesgue integrable real-valued functions defined
onE.

THEOREM 1. Let m be a positive integer and let Ii E VeE) (1 ~ i ~ m).
Then there exists a polynomial q E P such that

Et Iii - q I dx = ~~tit Ifi - pi dx.

Proof Let <Pk) be a sequence in P such that

l~~ i~ t IIi - Pk I dx = t~t i~ t IIi - p I dx.

For each k we have

o ~tlPk Idx

~ IE III - Pk I dx + t I.it I dx

~ I f Iii - Pk I dx + f III Idx
i~l E E

= inf ~ f Iii - pi dx
pEP i-I E

+ [~111i - Pk Idx - t~t Et Iii - pi dX] + t If1I dx.
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Since the term in brackets tends to zero as k tends to infinity the sequence
<IE 1 Pk I dx) is uniformly bounded. Thus the sequence <Pk) contains a
subsequence which converges, in the V norm, to an element of P (see, e.g.,
[2, p. 16]). Without loss we assume that there exists an element q E P such
that limk-><XJ IE 1 Pk - q I dx = O. Further, for each k

o :;( i~ t IIi - q I dx - ~~~ i~ t Ih - pi dx

:;(1t (I h - Pk 1+ 1Pk - q I) dx - ~IJt i~ t Ih - P I dx

= m f I Pk - q I dx + [f f 1Ii - Pk I dx - inf f f Ih - P I dX] .
E i~1 E pEP i=1 E

Since the term in brackets tends to zero as k approaches infinity, and since
limk-><XJ IE IPk - q Idx = 0 we conclude that

i~ t Ih - q I dx = ~! i~ t Ih - pi dx.

This completes the proof.
For a real valued functionf, defined on E, denote the set of its zeros by Zt .

THEOREM 2. Let m be a positive integer and let hE VeE) (1 :;( i :;( m).
Then a polynomial q E P is a best approximant to (fl ,... ,fm), i.e.,

i~ t Ih - q I dx = ~1J! i~ t Ih - P Idx,

ifffor every pEP,

I. f I P I dx ~ II. f P sgn(h - q) dx I·
i=1 Zt i-a i=1 E

(1)

Proof Let q be a polynomial in P which best approximates (fl ,...,fm)
and suppose that for some Po E P (1) does not hold. Without loss we may
assume that

1: f I Po I dx < I. f Po sgn(h - q) dx.
i=1 Zt i-a i=1 E

Now let t be a fixed positive real number and M = max",eE IPo(x)l, and
define

E'i = {x E E: Ih(X) - q(x)I :;( tM} (1 :;( i ~ m).
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Since sgn(.Ii - q) = sgn(.Ii - q - tpo) on E ,...." Ef ; (1 ~ i ~ m), we have

Ie IIi - q - tpo Idx

= f (.Ii - q - tpo) sgn(.Ii - q) dx + f 1.Ii - q - tpo I dx
L~ ~

= f IIi - q I dx - f tpo sgn(fi - q) dx + f 1.Ii - q I dx
EI'WEJi ENE!i Eli

- f 1.Ii - q Idx + f tpo sgn(.Ii - q) dx
Eli Eli

- f tpo sgn(.Ii - q) dx + f 1.Ii - q - tpo Idx
Eli Eli

= f 1.Ii - q I dx - f tPo sgn(.Ii - q) dx + f (.Ii - q - tpo)
E E ~

X [sgn(1i - q - tpo) - sgn(.Ii - q)] dx (l ~ i ~ m).

Since Iii - q - tpo I ~ 2tM on E f (1 ~ i ~ m), we have
;

Ie 1.Ii - q - tPo Idx - t 1.Ii - q Idx

~ t [f I Po I dx - f Po sgn(.Ii - q) dx + 4Mx(Ef ; - Zf;-«)]'
Zli-. E

Hence,

f: f 1.Ii - q - tpo Idx - f: f 1.Ii - q I dx
;=1 E i~1 E

~ t [flt
/i

-. I Po I dx - ;~ tpo sgn(fi - q) dx

+ 4M i~ x(Ef ;,...." Zfi-a)].

For each i (l ~ i ~ m) Ef ; is nondecreasing (in the sense of set inclusion)
with respect to t; and since xE < 00, lim t _ o x(Ef ,...." Zf -«) = 0 (1 ~ i ~ m).

; i

Thus there exists 1 > 0 such that

f: f IIi - q - lpo I dx - f: f 1.Ii - q I dx < 0,
;=1 E i=1 E

which contradicts the choice of q.
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Conversely, let q be a polynomial in P for which (1) holds for every pEP.
Then for any pEP we have

I. J Ih - q I dx
i~1 E

= I. J(h - p) sgn(h - q) dx + I. J (p - q) sgn(h - q) dx
i=1 E i~1 E

= I. J (h - p) sgn(h - q) dx + I. J (p - q) sgn(h - q) dx.
i=1 E-Ztj _q i=1 E

From this and (1) we obtain

~ I. J (fi - p) sgn(h - q) dx + I. f Ip - q I dx.
i=1 E-Ztj_q i=1 Ztj-q

Since Ip - q I = Ih - p I on Zf_q (1 ~ i ~ m) we obtain.
I. J Ih - q Idx ~ I. J Ih - pi dx,
i=1 E i=1 E

which completes the proof.

SECTION II

In this section we prove uniqueness theorems for the cases m = 2 and,
m = 3, after which we state without proof two uniqueness theorems, one for m
an even integer and one for m an odd integer. The proofs of these last two
theorems parallel the proofs of the theorems for the cases m = 2 and m = 3.

We say that a point Xo interior to a real interval I is a zero crossing of a
real-valued function f defined on I if f(xo) = 0 and f(x) . (x - xo) has the
same sign in some deleted neighborhood of Xo • (f may be identically zero in
a neighborhood of xo .)

LEMMA 1. Let I be a nondegenerate compact interval of the real line . Let fl
and f2 be continuous real-valued functions on I such thath ~ f2 on 1. Let q be
a polynomial in P such that
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If there exists x E I such that [fleX) - q(X)][f2(X) - q(x)] > 0 and ifIi - q
has at most a finite number of zeros, then Ii - q has more than n zeros on I
(i = 1,2).

Proof Letting p = 1 and m = 2 in Theorem 2 gives

o ;? Ii sgn(fl - q) dx + i sgn(f2 - q) dx I·

Since I sgn(fl - q) + sgn(f2 - q)1 = 2 in a neighborhood of x it follows
that bothfl - q and}; - q have a zero crossing in I. Let Xl < X2 < ... < Xk
be the zero crossings of fl - q. Since sgn(fl - q) > 0 implies that
sgn(J;. - q) + sgn(f2 - q) > 0 and sgn(J;. - q) < °implies that

sgn(J;. - q) + sgn(f2 - q) ;( 0,

and since I sgn(J;. - q) + sgn(f2 - q)1 = 2 in a neighborhood of x, it
follows that

i p sgn(J;. - q) dx + I/ sgn(f2 - q) dx =1= 0

where
k

p(x) = IT (x - Xi), X E I.
i~l

But Theorem 2 requires that this last sum of integrals be zero if k ;( n.
Thus k > n which implies that the number of zeros offl - q on I exceeds n.
A similar argument shows that); - q has more than n zeros on I.

LEMMA 2. Let I be a nondegenerate compact interval of the real line.
Let J;. and f2 be real valued measurable functions defined on I. Let M(x) =
max{fl(x),f2(X)}, X E I, and m(x) = min{J;.(x),f2(x)}, X E 1. Then for every
polynomial pEP we have

II IJ;. - p Idx + i I f2 - p I dx = II I m - p I dx + II I M - p I dx.

Proof The proof follows immediately by noticing that for all x E I and
for allp E P,

[J;.(x) - p(x)1 + If2(X) - p(x) I = I m(x) - p(x) I + I M(x) - p(x)l.

The next theorem gives a sufficient condition for the uniqueness of a best
approximant to (J;. ,};).
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THEOREM 3. Let I be a nondegenerate compact interval of the real line.
LethandJ; be continuous real-valuedfunctions on 1. Let q be a polynomial in P
such that

LI h - q I dx + II I f2 - q 1 dx = w-t [L 111 - pi dx + L112 - p 1 dX],

(2)

i.e., q is a best approximant to (h ,J;). If there exists x E I such that

[11(X) - q(X)][(f2(X) - q(x)] > 0,

then q is unique, i.e., ifq E P is a best approximant to (f1,J2), then q = q.

Proof Without loss one may assume, by Lemma 2, that h ~ 1'2 . Let q,
q E P be best approximants to (11 ,J2), where there exists x E I such that

[h(x) - q(x)][J;(x) - q(x)] > 0.

An application of the triangle inequality shows that % = !(q + q) (E P) is
also a best approximant to (II ,h). Since [1I(x) - q(x)][J;(x) - q(x)J > 0
in a neighborhood of x, it follows, using the equality condition for the triangle
inequality, that III(x) - q(x)I + If2(x) - q(x)1 > III(x) - h(x)I in a neigh­
borhood of x and hence

Thus, there exists XoE I such that

Further, since qo , q, q are all best approximants, we have

If I11 - qo Idx +LI12 - qo Idx - ~ [L III - q Idx + II IJ; - q I dX]

- ~ [L Ih - q I dx + II Ih - q IdX] = 0,

or

L(111 - qo I - II 11 - q I - II II - q I) dx

+ L(! 12 - qo I - t 112 - q 1- t 112 - q I) dx = 0.

Since 1ft - qo I ~ t 1ft - q I + t 1ft - q Ion I (i = 1,2), we have

1ft - qo 1- t 1ft - q 1- t 1ft - q I = 0 on I (i = 1,2).
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Thus, both Ii - q and Ii - q vanish at every zero ofIi - qo (i = 1, 2), i.e.,
q = q at every zero ofIi - qo (i = 1,2). To complete the proof it suffices
to argue thatli - qo has more than n zeros for either i = I or i = 2; but this
follows immediately from Lemma 1.

The next two lemmas are used in the proof of Theorem 4, which asserts
that the best approximant to (f1 ,Is ,fs) is unique.

LEMMA 3. Let I be a nondegenerate compact interval of the real line.
Let h , Is, and fs be measurable real valued functions on I. Let M(x) =
max{f1(x),Is(x),fs(x)}, x E I, c(x) = max[min{h(x),f2(x)}, min{f1(x),fs(x)},
min{!:l(x),fs(x)}l, x E I, and m(x) = min{h(x),Is(x),fs(x)}, x E I. Then for
every polynomial p in P

L Ih - p I dx + L IIs - p I dx + II Ifs - p I dx

= II Im - p I dx + Lie - p I dx + LIM - p I dx.

Proof The proof follows immediately by noticing that for all x E I

[hex) - p(x) I + If2(x) - p(x)I + Ifs(x) - p(x)I

= Im(x) - p(x) [ + I c(x) - p(x)1 + I M(x) - p(x)l.

LEMMA 4. Let I be a nondegenerate compact interval of the real line. Let
f1 ,Is ,andfs be real valued continuousfunctions on I such thath ~ Is :::;; fs on I.
Let q be a polynomial in P such that

L Ih - q Idx + L If2 - q I dx + LIfs - q I dx

= ~t [L Ih - p I dx + LIf2 - p I dx + L Ifs - p I dxJ.
IfIi - q has at most a finite number ofzeros on I (i = 1, 2, 3), then fs - q has
more than n zeros on I.

Proof Letting p = I and m = 3 in Theorem 2 gives

o~ IL sgn(h - q) dx + L sgn(f2 - q) dx + L sgn(fs - q) dx I·

Thus, f2 - q has a zero crossing in I. Let Xl < X2 < ... < Xk be the zero
crossings off2 - q. Since sgn(1s - q) > 0 implies that

Sgn(f1 - q) + Sgn(f2 - q) + sgn(fs - q) > 0 and sgn(f2 - q) < 0



130 CARROLL AND MCLAUGHLIN

implies that sgn(f1 - q) + sgn(l2 - q) + sgn(fa - q) < 0, it follows that

ILii sgn(l1 - q) dx + Lii sgn(l2 - q) dx + Lii sgn(la - q) dx I
~LIii I dx # 0,

where p(x) = n:=1 (x - Xi), x E I. But Theorem 2 requires that the sum of
integrals above be zero if k ,s:; n. Thus k > n which implies that the number
of zeros of f2 - q on I exceeds n.

Remark. The conclusion of the lemma holds without the assumption that
f1 - q and fa - q have a finite number of zeros on I. The proof is more
involved and is not given here since the weaker form is sufficient for our
purposes.

THEOREM 4. Let I be a nondegenerate compact interval of the real line.
Let f1 ,f2 andfa be continuous real valuedfunctions on I. Let q be a polynomial
in P such that

LI f1 - q I dx + LI f2 - q I dx + LI fa - q I dx

= inf [f I f1 - p Idx + f I f2 - p Idx + f I fa - p I dX],
pEP I 1 I

i.e., q is a best approximant to (11 ,f2 ,fa)' Then q is unique, i.e., if q E P is
a best approximant to (l1,f2 ,fa), then q = q.

Proof Without loss we may assume, by Lemma 3, thatf1 ,s:; f2 ,s:; fa on I.
The proof proceeds by contradiction. One assumes that q, q E P are distinct
best approximants. An application of the triangle inquality shows that
qo = !(q + q) (E P) is also a best approximant to (l1,f2 ,fa). An argument
similar to that given in the proof of Theorem 3 shows that q = q at every
zero of Ii - qo (i = 1,2,3). Since q # q, the number of zeros on I of
Ii - qo (i = 1,2,3) is less than n. In particular, the number of zeros of
f2 - qo is less than n which contradicts the conclusion of Lemma 4.

Theorem 5 gives a sufficient condition for the uniqueness of the best
approximant to (l1,f2 ,... ,hm)' Theorem 6 asserts that the best approximant
to (11 ,f2 ,... ,hm+1) is unique. Their proofs are similar to those of Theorems 3
and 4, respectively.

THEOREM 5. Let I be a nondegenerate compact interval of the real line. Let
f1 ,s:; ... ,s:; f2m be continuous real valued functions on I. Let q be a polynomial
in P such that

2m 2m

i~ LIii - q I dx = 1~~ i~ LIii - p I dx,
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i.e., q is a best approximant to (fl ,...,f2m)' If there exists x E I such that

[fm(x) - q(x)][fm+l(x) - q(x)] > 0,
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then q is unique, i.e., ifq E P is a best approximant to (fl ,... ,hm) then q = q.

Remark. If It ,... ,hm are continuous real valued functions on I, not
necessarily ordered, and

hi(x) = max min{f"(I)(x), ... ,f"(i)(x)}
1TESi

(1 ~ i ~ 2m),

where Si denotes the set of all one to one mappings of the set of integers
{I,... , i} into the set of integers {I,..., 2m} (I ~ i ~ 2m), then we can show
that a polynomial which best approximates <fl '''',hm> is a polynomial which
best approximates (hI'"'' h2m) and vice versa. Thus, we can give a sufficient
condition that the polynomial which best approximates (ft ,... ,hm) be unique.

THEOREM 6. Let I be a nondegenerate compact interval of the real line.
LetIt ,... ,hm+l be continuous real valuedfunctions on I. Let q be a polynomial
in P such that

i.e., q is a best approximant to (It ,... ,f2m+l)' Then q is unique.
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